DRILL QUESTION

If $f(t) = t^2 - |3t|$, what is the average rate of change between t = -3 and t = -1?

Answer

-1

2.4 EXERCISES

CONCEPTS

1. If you travel 100 miles in two hours, then your average speed for the trip is

average speed =

2. The average rate of change of a function f between x = a and x = b is

average rate of change

3. The average rate of change of the function $f(x) = x^2$ between x = 1 and x = 5 is

average rate of change=

- 4. (a) The average rate of change of a function f between x = aand x = b is the slope of the _____ line between (a, f(a)) and (b, f(b)).
- (b) The average rate of change of the linear function

f(x) = 3x + 5 between any two points is ____

APPLICATIONS

21. $f(x) = \frac{1}{2}x + 3$

11. $h(t) = t^2 + 2t$; t = -1, t = 4

15. $f(x) = 3x^2$; x = 2, x = 2 + h

17. $g(x) = \frac{1}{x}$; x = 1, x = a**18.** $g(x) = \frac{2}{x+1}$; x = 0, x = h

19. $f(t) = \frac{2}{t}$; t = a, t = a + h

20. $f(t) = \sqrt{t}$; t = a, t = a + h

12. $f(z) = 1 - 3z^2$; z = -2, z = 0

13. $f(x) = x^3 - 4x^2$; x = 0, x = 10**14.** $f(x) = x + x^4$; x = -1, x = 3

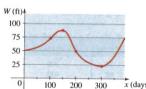
16. $f(x) = 4 - x^2$; x = 1, x = 1 + h

23. Changing Water Levels The graph shows the depth of water W in a reservoir over a one-year period as a function of the number of days x since the beginning of the year. What was the average rate of change of W between x = 100 and x = 200?

21–22 ■ A linear function is given. (a) Find the average rate of change of the function between x = a and x = a + h. (b) Show

that the average rate of change is the same as the slope of the line.

22. g(x) = -4x + 2



x (days) 24. Population Growth and Decline The graph shows the

found in part (a).

0

- population P in a small industrial city from 1950 to 2000. The variable x represents the number of years since 1950. (a) What was the average rate of change of P between x = 20
- and x = 40?(b) Interpret the value of the average rate of change that you
 - (thousands) 50 40 30 20 10

20 30 40 50 x (yr)

SKILLS

5-8 ■ The graph of a function is given. Determine the average rate of change of the function between the indicated points on the

9-20 ■ A function is given. Determine the average rate of change of the function between the given values of the variable.

9. f(x) = 3x - 2; x = 2, x = 3

10. $g(x) = 5 + \frac{1}{2}x$; x = 1, x = 5

- 25. Population Growth and Decline The table gives the population in a small coastal community for the period 1997–2006. Figures shown are for January 1 in each year.
 - (a) What was the average rate of change of population between 1998 and 2001?
 - (b) What was the average rate of change of population between 2002 and 2004?
 - (c) For what period of time was the population increasing?
 - (d) For what period of time was the population decreasing?

Year	Population	
1997	624	
1998	856	
1999	1,336	
2000	1,578	
2001	1,591	
2002	1,483	
2003	994	
2004	826	
2005	801	
2006	745	

- 26. Running Speed A man is running around a circular track that is 200 m in circumference. An observer uses a stopwatch to record the runner's time at the end of each lap, obtaining the data in the following table.
 - (a) What was the man's average speed (rate) between 68 s and 152 s?
 - (b) What was the man's average speed between 263 s and 412 s?
 - (c) Calculate the man's speed for each lap. Is he slowing down, speeding up, or neither?

Time (s)	Distance (m)	
32	200	
68	400	
108	600	
152	800	
203	1000	
263	1200	
335	1400	
412	1600	

- 27. CD Player Sales The table shows the number of CD players sold in a small electronics store in the years 1993–2003.
 - (a) What was the average rate of change of sales between 1993 and 2003?
 - (b) What was the average rate of change of sales between 1993 and 1994?
 - (c) What was the average rate of change of sales between 1994 and 1996?

Holt McDougal

(d) Between which two successive years did CD pla increase most quickly? Decrease most quickly?

Year	CD players sold	
1993	512	
1994	520	
1995	413	
1996	410	
1997	468	
1998	510	
1999	590	
2000	607	
2001	732	
2002	612	
2003	584	

28. Book Collection Between 1980 and 2000, a rare collector purchased books for his collection at the rate books per year. Use this information to complete the table. (Note that not every year is given in the table.)

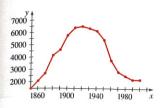
Year	Number of books	
1980	420	
1981	460	
1982	154, 198	
1985	345.0	
1990	13000	
1992	1000	
1995	168bat	
1997	199603	
1998	15,000	
1999	9.75	
2000	1220	

29. Cooling Soup When a bowl of hot soup is left in a the soup eventually cools down to room temperature. The ature T of the soup is a function of time t. The table below the temperature (in °F) of a bowl of soup t minutes after on the table. Find the average rate of change of the tempe the soup over the first 20 minutes and over the next 20 m During which interval did the soup cool off more quickly

t (min)	T (°F)	t (min)	T (°F)
0	200	35	94
5	172	40	89
10	150	50	81
15	133	60	77
20	119	90	72
25	108	120	70
30	100	150	70

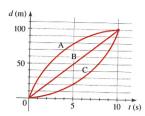
30. Farms in the United States The graph gives the number of farms in the United States from 1850 to 2000.

- (a) Estimate the average rate of change in the number of farms between (i) 1860 and 1890 and (ii) 1950 and
- (b) In which decade did the number of farms experience the greatest average rate of decline?



DISCOVERY - DISCUSSION - WRITING

- 31. 100-Meter Race A 100-m race ends in a three-way tie for first place. The graph at the top of the next column shows distance as a function of time for each of the three winners.
 - (a) Find the average speed for each winner.
 - (b) Describe the differences between the ways in which the three runners ran the race.



32. Linear Functions Have Constant Rate of Change If f(x) = mx + b is a linear function, then the average rate of change of f between any two real numbers x_1 and x_2 is

average rate of change =
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Calculate this average rate of change to show that it is the same as the slope m.

33. Functions with Constant Rate of Change Are Linear If the function f has the same average rate of change c between any two points, then for the points a and x we have

$$c = \frac{f(x) - f(a)}{x - a}$$

Rearrange this expression to show that

$$f(x) = cx + (f(a) - ca)$$

and conclude that f is a linear function.

2.5 TRANSFORMATIONS OF FUNCTIONS

Vertical Shifting ightharpoonup Horizontal Shifting ightharpoonup Reflecting Graphs ightharpoonup Vertical Stretching and Shrinking ► Horizontal Stretching and Shrinking ► Even and Odd Functions

In this section we study how certain transformations of a function affect its graph. This will give us a better understanding of how to graph functions. The transformations that we study are shifting, reflecting, and stretching.

Vertical Shifting

Adding a constant to a function shifts its graph vertically: upward if the constant is positive and downward if it is negative.

In general, suppose we know the graph of y = f(x). How do we obtain from it the graphs of

$$y = f(x) + c$$
 and $y = f(x) - c$ $(c > 0)$

The y-coordinate of each point on the graph of y = f(x) + c is c units above the y-coordinate of the corresponding point on the graph of y = f(x). So we obtain the graph of y = f(x) + c simply by shifting the graph of y = f(x) upward c units. Similarly, we obtain the graph of y = f(x) - c by shifting the graph of y = f(x) downward c units.

Recall that the graph of the function f is the same as the graph of the equation y = f(x).

TEXT QUESTION

What is the difference between a vertical stretch and a vertical shift?

A vertical stretch extends the graph in the vertical direction, changing its shape. A vertical shift simply moves the graph in the vertical direction, preserving its shape.

SUGGESTED TIME **AND EMPHASIS**

1 class, essential material