- **8.** (a) What is an even function? What symmetry does its graph possess? Give an example of an even function.
  - (b) What is an odd function? What symmetry does its graph possess? Give an example of an odd function.
- 9. What does it mean to say that f(3) is a local maximum value of f?
- 10. Suppose that f has domain A and g has domain B.
  - (a) What is the domain of f + g?
  - **(b)** What is the domain of fg?
  - (c) What is the domain of f/g?

- 11. How is the composite function  $f \circ g$  defined?
- 12. (a) What is a one-to-one function?
  - (b) How can you tell from the graph of a function whether it is one-to-one?
  - (c) Suppose f is a one-to-one function with domain A and range B. How is the inverse function f<sup>-1</sup> defined? What is the domain of f<sup>-1</sup>? What is the range of f<sup>-1</sup>?
  - (d) If you are given a formula for f, how do you find a formula for f<sup>-1</sup>?
  - (e) If you are given the graph of f, how do you find the graph of f<sup>-1</sup>?

#### **■ EXERCISES**

- 1–2 A verbal description of a function f is given. Find a formula that expresses f in function notation.
- 1. "Square, then subtract 5."
- 2. "Divide by 2, then add 9."
- $\mathbf{3-4} \ \blacksquare \ \mathbf{A}$  formula for a function f is given. Give a verbal description of the function.

3. 
$$f(x) = 3(x + 10)$$

**4.** 
$$f(x) = \sqrt{6x - 10}$$

5-6 ■ Complete the table of values for the given function.

5. 
$$g(x) = x^2 - 4x$$

**6.** 
$$h(x) = 3x^2 + 2x - 5$$

0

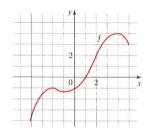
h(x)

| x  | g(x) |  |
|----|------|--|
| -1 |      |  |
| 0  |      |  |
| 1  |      |  |
| 2  |      |  |
| 3  |      |  |
|    |      |  |

- A publisher estimates that the cost C(x) of printing a run of x copies of a certain mathematics textbook is given by the function C(x) = 5000 + 30x 0.001x<sup>2</sup>.
  - (a) Find C(1000) and C(10,000).
  - (b) What do your answers in part (a) represent?
  - (c) Find C(0). What does this number represent?
- 8. Reynalda works as a salesperson in the electronics division of a department store. She earns a base weekly salary plus a commission based on the retail price of the goods she has sold. If she sells x dollars worth of goods in a week, her earnings for that week are given by the function E(x) = 400 + 0.03x.
  - (a) Find E(2000) and E(15,000).
- (b) What do your answers in part (a) represent?
- (c) Find E(0). What does this number represent?
- (d) From the formula for *E*, determine what percentage Reynalda earns on the goods that she sells.
- **9.** If  $f(x) = x^2 4x + 6$ , find f(0), f(2), f(-2), f(a), f(-a), f(x + 1), f(2x), and 2f(x) 2.
- 10. If  $f(x) = 4 \sqrt{3x 6}$ , find f(5), f(9), f(a + 2), f(-x),  $f(x^2)$ , and  $[f(x)]^2$ .

11. Which of the following figures are graphs of functions? Which of the functions are one-to-one?












- 12. The graph of a function f is given.
  - (a) Find f(-2) and f(2).
  - (b) Find the domain of f.
  - (c) Find the range of f.
  - (d) On what intervals is f increasing? On what intervals is f decreasing?
  - (e) What are the local maximum values of f?
  - (f) Is f one-to-one?



13-14 ■ Find the domain and range of the function.

13. 
$$f(x) = \sqrt{x+3}$$

**14.** 
$$F(t) = t^2 + 2t + 5$$

## 15-22 ■ Find the domain of the function.

15. 
$$f(x) = 7x + 15$$

**16.** 
$$f(x) = \frac{2x+1}{2x-1}$$

17. 
$$f(x) = \sqrt{x+4}$$

**16.** 
$$f(x) = \frac{2x+1}{2x-1}$$
  
**18.**  $f(x) = 3x - \frac{2}{\sqrt{x+1}}$ 

19. 
$$f(x) = \frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+1}$$

17. 
$$f(x) = \sqrt{x+4}$$
 18.  $f(x) = 3x - \frac{2}{\sqrt{x+1}}$  19.  $f(x) = \frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2}$  20.  $g(x) = \frac{2x^2 + 5x + 3}{2x^2 - 5x - 3}$ 

21. 
$$h(x) = \sqrt{4-x} + \sqrt{x^2-1}$$
 22.  $f(x) = \frac{\sqrt[3]{2x+1}}{\sqrt[3]{2x+2}}$ 

**22.** 
$$f(x) = \frac{\sqrt[3]{2x+1}}{\sqrt[3]{2x+2}}$$

## 23-40 Sketch the graph of the function.

23. 
$$f(x) = 1 - 2x$$

**24.** 
$$f(x) = \frac{1}{3}(x-5), \ 2 \le x \le 8$$

**25.** 
$$f(t) = 1 - \frac{1}{2}t^2$$

**26.** 
$$g(t) = t^2 - 2t$$

27. 
$$f(x) = x^2 - 6x + 6$$

**28.** 
$$f(x) = 3 - 8x - 2x^2$$

**29.** 
$$g(x) = 1 - \sqrt{x}$$

**30.** 
$$g(x) = -|x|$$

31. 
$$h(x) = \frac{1}{2}x^3$$

**32.** 
$$h(x) = \sqrt{x+3}$$

31. 
$$h(x) = \frac{1}{2}x$$

32. 
$$h(x) = \sqrt{x}$$

33. 
$$h(x) = \sqrt[3]{x}$$

**34.** 
$$H(x) = x^3 - 3x^2$$

35. 
$$g(x) = \frac{1}{x^2}$$

**36.** 
$$G(x) = \frac{1}{(x-3)^2}$$

$$f(x) = \begin{cases} 1 - x \\ 1 - x \end{cases}$$

37. 
$$f(x) = \begin{cases} 1 & x & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

38. 
$$f(x) = \begin{cases} 1 - 2x & \text{if } x \le 0 \\ 2x - 1 & \text{if } x > 0 \end{cases}$$

37. 
$$f(x) = \begin{cases} 1 - x & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$
38.  $f(x) = \begin{cases} 1 - 2x & \text{if } x \le 0 \\ 2x - 1 & \text{if } x > 0 \end{cases}$ 
39.  $f(x) = \begin{cases} x + 6 & \text{if } x < -2 \\ x^2 & \text{if } x \ge -2 \end{cases}$ 

40. 
$$f(x) = \begin{cases} -x & \text{if } x < 0 \\ x^2 & \text{if } 0 \le x < 2 \\ 1 & \text{if } x \ge 2 \end{cases}$$

# **41–44** ■ Determine whether the equation defines y as a function

**41.** 
$$x + y^2 = 14$$

**42.** 
$$3x - \sqrt{y} = 8$$

**41.** 
$$x + y^2 = 14$$
  
**43.**  $x^3 - y^3 = 27$ 

**44.** 
$$2x = y^4 - 16$$

### 45. Determine which viewing rectangle produces the most appropriate graph of the function

$$f(x) = 6x^3 - 15x^2 + 4x - 1$$

(ii) 
$$[-8, 8]$$
 by  $[-8, 8]$ 

(i) 
$$[-2, 2]$$
 by  $[-2, 2]$  (ii)  $[-8, 8]$  by  $[-8, 8]$  (iii)  $[-4, 4]$  by  $[-12, 12]$  (iv)  $[-100, 100]$  by  $[-100, 100]$ 

## 46. Determine which viewing rectangle produces the most appropriate graph of the function $f(x) = \sqrt{100 - x^3}$

- (i) [-4, 4] by [-4, 4]
- (ii) [-10, 10] by [-10, 10] (iii) [-10, 10] by [-10, 40]
- (iii) (iv) [-100, 100] by [-100, 100]
- 47–50 Draw the graph of the function in an appropriate viewing

**47.** 
$$f(x) = x^2 + 25x + 173$$

**48.** 
$$f(x) = 1.1x^3 - 9.6x^2 - 1.4x + 3.2$$

**49.** 
$$f(x) = \frac{x}{\sqrt{x^2 + 16}}$$

**50.** 
$$f(x) = |x(x+2)(x+4)|$$

$$f(x) = \sqrt{x^3 - 4x + 1}$$

$$f(x) = x^4 - x^3 + x^2 + 3x - 6$$

#### 33-54 ■ Draw a graph of the function f, and determine the intervals on which f is increasing and on which f is decreasing.

53. 
$$f(x) = x^3 - 4x^2$$

**54.** 
$$f(x) = |x^4 - 16|$$

#### 55-58 ■ Find the average rate of change of the function between the given points.

**55.** 
$$f(x) = x^2 + 3x$$
;  $x = 0, x = 2$ 

**56.** 
$$f(x) = \frac{1}{x-2}$$
;  $x = 4, x = 8$ 

**57.** 
$$f(x) = \frac{1}{x}$$
;  $x = 3, x = 3 + h$ 

**58.** 
$$f(x) = (x+1)^2$$
;  $x = a, x = a + h$ 

#### 59. The population of a planned seaside community in Florida is given by the function $P(t) = 3000 + 200t + 0.1t^2$ , where t represents the number of years since the community was incorporated in 1985.

- (a) Find P(10) and P(20). What do these values represent?
- (b) Find the average rate of change of P between t = 10 and t = 20. What does this number represent?
- 60. Ella is saving for her retirement by making regular deposits into a 401(k) plan. As her salary rises, she finds that she can deposit increasing amounts each year. Between 1995 and 2008, the annual amount (in dollars) that she deposited was given by the function  $D(t) = 3500 + 15t^2$ , where t represents the year of the deposit measured from the start of the plan (so 1995 corresponds to t = 0 and 1996 corresponds to t = 1, and so on).
  - (a) Find D(0) and D(15). What do these values represent?
  - (b) Assuming that her deposits continue to be modeled by the function D, in what year will she deposit \$17,000?
  - (c) Find the average rate of change of D between t = 0 and t = 15. What does this number represent?

## 61-62 ■ A function f is given. (a) Find the average rate of change of f between x = 0 and x = 2, and the average rate of change of f between x = 15 and x = 50. (b) Were the two average rates of change that you found in part (a) the same? Explain why or

**61.** 
$$f(x) = \frac{1}{2}x - 6$$

**62.** 
$$f(x) = 8 - 3x$$

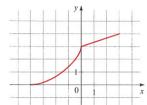
63. Suppose the graph of f is given. Describe how the graphs of the following functions can be obtained from the graph of f.

(a) 
$$y = f(x) + 8$$

**(b)** 
$$y = f(x + 8)$$

(c) 
$$y = 1 + 2f(x)$$

**(b)** 
$$y = f(x + 8)$$


(e) 
$$y = 1 + 2f$$
  
(e)  $y = f(-x)$ 

(d) 
$$y = f(x - 2) - 2$$
  
(f)  $y = -f(-x)$ 

$$(\mathbf{g}) \ \ y = -f(x)$$

(h) 
$$y = f^{-1}(x)$$

- **64.** The graph of f is given. Draw the graphs of the following
  - (a) y = f(x 2)(c) y = 3 - f(x)
- **(b)** y = -f(x)
- (e)  $y = f^{-1}(x)$
- (d)  $y = \frac{1}{2}f(x) 1$  $(\mathbf{f}) \ \ y = f(-x)$



65. Determine whether f is even, odd, or neither.

(a) 
$$f(x) = 2x^5 - 3x^2 + 2$$
 (b)  $f(x) = x^3 - x^3$ 

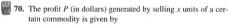
(c) 
$$f(x) = \frac{1 - x^2}{1 + x^2}$$

$$(\mathbf{d}) \ f(x) = \frac{1}{x+2}$$

66. Determine whether the function in the figure is even, odd, or neither.










- **67.** Find the minimum value of the function  $g(x) = 2x^2 + 4x 5$ .
- **68.** Find the maximum value of the function  $f(x) = 1 x x^2$ .
- 69. A stone is thrown upward from the top of a building. Its height (in feet) above the ground after t seconds is given by

$$h(t) = -16t^2 + 48t + 32$$

What maximum height does it reach?



$$P(x) = -1500 + 12x - 0.0004x^2$$

What is the maximum profit, and how many units must be sold to generate it?

71-72 ■ Find the local maximum and minimum values of the function and the values of x at which they occur. State each answer correct to two decimal places.

**71.** 
$$f(x) = 3.3 + 1.6x - 2.5x^3$$
 **72.**  $f(x) = x^{2/3}(6 - x)^{1/3}$ 

**73–74**  $\blacksquare$  Two functions, f and g, are given. Draw graphs of f, g, and f + g on the same graphing calculator screen to illustrate the concept of graphical addition.

**73.** 
$$f(x) = x + 2$$
,  $g(x) = x^2$ 

**74.** 
$$f(x) = x^2 + 1$$
,  $g(x) = 3 - x^2$ 

**75.** If  $f(x) = x^2 - 3x + 2$  and g(x) = 4 - 3x, find the following functions.

(a) 
$$f + g$$
 (b)  $f - g$  (d)  $f/g$  (e)  $f \circ g$ 

(e) 
$$f \circ g$$

**76.** If 
$$f(x) = 1 + x^2$$
 and  $g(x) = \sqrt{x-1}$ , find the following.

(a) 
$$f \circ g$$
 (b)  $g \circ f$ 

(c) 
$$(f \circ g)(2)$$

(a) 
$$f \circ g$$
 (b)  $g \circ f$  (c)  $(f \circ g)(2)$   
(d)  $(f \circ f)(2)$  (e)  $f \circ g \circ f$  (f)  $g \circ f \circ g$ 

77-78  $\blacksquare$  Find the functions  $f\circ g,g\circ f,f\circ f,$  and  $g\circ g$  and their

77. 
$$f(x) = 3x - 1$$
,  $g(x) = 2x - x^2$ 

**78.** 
$$f(x) = \sqrt{x}$$
,  $g(x) = \frac{2}{x-4}$ 

**79.** Find 
$$f \circ g \circ h$$
, where  $f(x) = \sqrt{1 - x}$ ,  $g(x) = 1 - x^2$ , and  $h(x) = 1 + \sqrt{x}$ .

**80.** If 
$$T(x) = \frac{1}{\sqrt{1 + \sqrt{x}}}$$
, find functions  $f, g$ , and  $h$  such that  $f \circ g \circ h = T$ .

81-86 ■ Determine whether the function is one-to-one.

**81.** 
$$f(x) = 3 + x^3$$

**82.** 
$$g(x) = 2 - 2x + x^2$$

**83.** 
$$h(x) = \frac{1}{x^4}$$

**84.** 
$$r(x) = 2 + \sqrt{x+3}$$

**85.** 
$$p(x) = 3.3 + 1.6x - 2.5x^3$$

**86.** 
$$q(x) = 3.3 + 1.6x + 2.5x^3$$

87-90 ■ Find the inverse of the function.

87. 
$$f(x) = 3x - 2$$

**88.** 
$$f(x) = \frac{2x+1}{3}$$

**89.** 
$$f(x) = (x+1)^3$$

**90.** 
$$f(x) = 1 + \sqrt[5]{x-2}$$

$$f(x) = x^2 - 4 \qquad x \ge 0$$

(b) Use part (a) to sketch the graph of 
$$f^{-1}$$
.

- (e) Find an equation for f
- **92.** (a) Show that the function  $f(x) = 1 + \sqrt[4]{x}$  is one-to-one.
  - (b) Sketch the graph of f.
  - (c) Use part (b) to sketch the graph of  $f^{-1}$ .
  - (d) Find an equation for  $f^{-1}$ .

210