Binomial Distributions, Geometric
Distributions, and Sampling
Distributions

IN THIS CHAPTER

Summary: In this chapter we finish laying the mathematical (probability) basis

for inference by considering the binomial and geometric situations that occur

often enough to warrant our study. In the last part of this chapter, we begin

our study of inference by introducing the idea of a sampling distribution,

one of the most important concepts in statistics. Once we've mastered this

material, we will be ready to plunge into a study of formal inference |

(Chapters 11-14). 1
J
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Binomial Distributions

A binomial experiment has the following properties:

* The experiment consists of a fixed number, 7, of identical trials.
* There are only two possible outcomes (that’s the “bi” in “binomial”): success (S) or

failure (F).
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* The probability of success, 2 is the same for each trial.

* The trials are independent (thar is, knowledge of the outcomes of earlier trials does not
affect the probability of success of the next trial).

* Our interest is in a binomial random variable X which is the count of successes in 7
trials. The probability distribution of Xis the binomial distribution.

(Taken together, the second, third, and fourth bullets above are called Bernoulli trials.
One way to think of a binomial setting is as a fixed number 7 of Bernoulli trials in which
our random variable of interest is the count of successes X in the # trials. You do not need
to know the term Bernoulli trials for the AP exam.)

The short version of this is to say that a binomial experiment consists of » independent
trials of an experiment thar has two possible outcomes (success or failure), each trial having
the same probability of success (). The binomial random variable Xis the count of successes.

In practice, we may consider a situation to be binomial when, in fact, the independ-
ence condition is not quite satisfied. This occurs when the probability of occurrence of a
given trial is affected only slightly by prior trials. For example, suppose that the probability
of a defect in a manufacturing process is 0.0005. Thac is, there is, on average, only 1 defect
in 2000 items. Suppose we check a sample of 10,000 items for defects. When we check the
first item, the proportion of defects remaining changes slightly for the remaining 9,999
items in the sample. We would expect 5 out of 10,000 (0.0005) to be defective. But if the
first one we look at is 70z defective, the probability of the next one being defective has
changed to 5/9999 or 0.0005005. It’s a small change but it means thar the trials are not,
strictly speaking, independent. A common rule of thumb is that we will consider a situa-
tion to be binomial if the population size is ar least 10 times the sample size,

Symbolically, for the binomial random variable X, we say X has B(n, 2.

example: Suppose Dolores is a 65% free throw shooter. If we assume that that
repeated shots are independent, we could ask, “What is the probability that
Dolores makes exactly 7 of her next 10 free throws?” If X is the binomial
random variable that gives us the count of successes for this experiment, then

we say that X'has B(10,0.65). Our question is then: AX=7) =,

We can think of B(1,p,%) as a particular binomial probability. In this example,
then, B(10,0.65,7) is the probability that chere are exactly 7 successes in 10 repe-
titions of a binomial experiment where £ =0.65. This is handy because it is the
same syntax used by the T1-83/84 calculator (binompdf (n,p,x)) when
doing binomial problems.

If X has B(n, 2), then X can take on the values 0,1,2, ..., n Then,
Bln px)=P(X =)= (") p* (1= py

gives the binomial probability of exactly x successes for a binomial random variable X

that has B(7, 2).

Now,

On the T1-83/84, (nJ
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and this is found in the MATH PRB menu. 7/ ( “, factorial”) means n(n— 1)(n—2) ...
(2)(1,), and the factorial symbol can be found in the MATH PRB menu.

example: Find B(15,.3,5). That is, find P(X=5) fora 15 trials of 2 binomial
random variable X that succeeds with probability 3.

solution:

P(X=5)=(155)(o.3)5(1-o.3)”-‘

| s
=_1§'_(0.3)” (0.7)"° =.206.
5110!

n
(On the T1-83/84, (r) = n.C,r can be found

. 1
in the MATH PRB menu. To get ( ;J, enter 15,C,5.)

Calculator Tip: On the TI-83/84, the solution to the previous example is given by
% binompdf (15,0.3,5). The binompdf function is found in the DISTR menu

of the calculator. The syntax for this function is binompdf (n, P, x) . The function
binomcdf (n, p, x) =PX=0)+PAX=1)+... P(X = x). That is, it adds up the
binomial probabilities from n =0 through 7 = x. You must remember the “npx” order—

/]

it’s not optional. Try a mnemonic like “never play xylophone.”

example: Consider once again our free-throw shooter (Dolores) from an earlier
example. Dolores is a 65% free-throw shooter and each shot is independent. If
Xis the count of free throws made by Dolores, then X has B(10, 0.65) if she
shoots 10 free throws. What is (X =7)?

solution:
| .
P(X=7) =(lo)(0.65)7(0.3 517 =12 (0.65)(0.65)"
7 713!

=binompdf (10,0.65,7)=0.252.

example: What is the probability that Dolores makes #o more than 5 free throws?
That is, what is AX = 5)?

solution:

| P(X £5)=P(X =0)+ P(X =1)+ P(X =2)+ P(X =3)
| +P(X = 4)+ P(X =5)= (100)(0.65)0(0.35)10 +(110)(0.65)1(o.35)"

+...+(150)(o.65)’>(0.35)5 ~0.249.

There is about a 25% chance that she will make 5 or fewer free throws. The
solution to this problem using the calculator is given by binomecdf
(10,0.65,5).
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example: What is the probability that Dolores makes at least 6 free throws?

solution: A(X= 6) = A X=6)+ AX=7)+... + P(X=10)
=1-binomecdf (10,0.65,5)=0.751.

(Note that A X> 6) =1 -binomcdf (10,0.65,6)).

The mean and standard deviation of a binomial random variable X are given by

Uy =np; 0, = \Jnp(l- p). A binomial distribution for a given nand p (meaning you have
all possible values of x along with their corresponding probabilities) is an example of a prob-
ability distribution as defined in Chapter 7. The mean and standard deviation of a binomial
random variable X could be found by using the formulas from Chapter 7,

but clearly the formulas for the binomial are easier to use. Be careful that you don't try to
use the formulas for the mean and standard deviation of a binomial random variable for a
discrete random variable thart is 7ot binomial.

example: Find the mean and standard deviation of a binomial random variable X that

has B(85, 0.6).
solution: , =(85)(0.6)=51;0, =+/85(0.6)(0.4) =4.52.

Normal Approximation to the Binomial

Under the proper conditions, the shape of a binomial distribution is approximately normal,
and binomial probabilities can be estimated using normal probabilities. Generally, this is
true when #7p = 10 and #(1 - p) = 10 (some books use np = 5and n(1 - p) = 5; that's OK).
These conditions are not satisfied in Graph A (X has B(20, 0.1)) below, but they are satis-
fied in Graph B (X has B(20, 0.5))

Graph A: B (20, 0.1) Graph B: B (20, 0.5)
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Another way to say this is: If X has B(m p), then X has approximately
N (np,\np(1-p)) , provided that np = 10 and n(1 ~p) =10 (or mp=5and n(l - p) = 5).

example: Nationally, 15% of community college students live more than 6 miles
from campus. Data from a simple random sample of 400 students at one com-
munity college are analyzed.

(a) What are the mean and standard deviation for the number of students in the
sample who live more than 6 miles from campus?

(b) Use a normal approximation to calculate the probability that at least 65 of the
students in the sample live more than 6 miles from campus.

solution: If Xis the number of students who live more than 6 miles from campus,

then X has B(400, 0.15).

(a) 4 =400(0.15) = 60; 0 =/400(0.15)(0.85) =7.14.

(b) Because 400(0.15) = 60 and 400(0.85) = 340, we can use the normal approxi-
mation to the binomial with mean 60 and standard deviation 7.14. The situation
is pictured below:

60 65

65-060

Using Table A, we have P(X =65)= P[z = = 0.70) =1-0.7580 = 0.242.

By calculator, this can be found as normalcdf (65,1000,60,7.14) = 0.242.
The exact binomial solution to this problem is given by

1 -binomcdf (400,0.15,64) = 0.261 (you use x = 64 since P(X = 65)
=1 - A X= 64)).

In reality, you will need to use a normal approximation to the binomial only in lim-
; ited circumstances. In the example above, the answer can be arrived at quite easily using the
exact binomial capabilities of your calculator. The only time you might want to use a
normal approximation is if the size of the binomial exceeds the capacity of your calculator
(for example, enter binomcdf (50000000,0.7, 3250000). You'll most likely see
ERR:DOMAIN, which means you have exceeded the capacity of your calculator, and you
didn’t have access to a computer. The real concept you need to understand the normal
approximation to a binomial is that another way of looking at binomial data is in terms of
the proportion of successes rather than the count of successes. We will approximate a distri-

bution of sample proportions with a normal distribution and the concepts and conditions
for it are the same.
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Geometric Distributions

In Section 8.1, we defined a binomial setting as a experiment in which the following con-
ditions are present:

* The experiment consists of a fixed number, 7, of identical trials.

* There are only two possible outcomes: success (8) or failure (F).

* The probability of success, p, is the same for each trial.

* The trials are independent (that is, knowledge of the outcomes of earlier trials does not
affect the probability of success of the next trial).

* Our interest is in a binomial random variable X, which is the count of successes in 72
trials. The probability distribution of Xis the binomial distribution.

There are times we are interested not in the count of successes out of n fixed trials, but
in the probability that the first success occurs on a given trial, or in the average number of
trials until the first success. A geometric setting is defined as follows.

* There are only two possible outcomes: success () or failure (F).

* The probability of success, p, is the same for each trial.

* The trials are independent (that s, knowledge of the outcomes of earlier trials does not
affect the probability of success of the next trial).

* Our interest is in a geometric random variable X; which is the number of trials neces-
sary to obtain the first success.

Note that if Xis a binomial, then X can take on the values 0, 1,2, ..., nlf Xis geomer-
ric, then it takes on the values 1, 2, 3,.... There can be zero successes in a binomial, bur the
earliest a first success can come in a geometric setting is on the first trial.

It Xis geometric, the probability that the first success occurs on the nth #rial is given by
P(X=1n) = p(1 - p)"'. The value of P(X = #) in a geometric setting can be found on the
TI-83/84 calculator, in the DISTR menu, as geometpdf (p, n) (note that the order of
p and 7 are, for reasons known only to the good folks at TI, reversed from the binomial).
Given the relative simplicity of the formula for 2(X = #) for a geometric setting, it’s probably
just as casy to calculate the expression directly. There is also a geometcdf function that
behaves analogously to the binomedf function, but is not much needed in this course.

example: Remember Dolores, the basketball player whose free-throw shooting
percentage was 0.65? What is the probability that the first free throw she man-
ages to hit is on her fourth attempt?

solution: P(X'= 4) = (0.65) (1-0.65)%" = (0.65) (0.35)* = 0.028. This can be done on
the TI-83/84 as follows: geometpdf (p,n) =geometpdf (0.65,4) =0.028.

example: In a standard deck of 52 cards, there are 12 face cards. So the probabil-
ity of drawing a face card from a full deck is 12/52 = 0.231.

(a) If you draw cards with replacement (that is, you replace the card in the deck
before drawing the next card), what is the probability that the first face card
you draw is the 10th card?

(b) If you draw cards without replacement, what is the probability that the first
face card you draw is the 10th card?

solution:

(@) AX=10)=(0.231) (1 = 0.231)° = 0.022. On the TI-83/84:
geometpdf (0.231,10)=0.0217).
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(b) If you don't replace the card each time, the probability of drawing a face card
on each trial is different because the proportion of face cards in the deck
changes each time a card is removed. Hence, this is not a geometric setting
and cannot be answered the by techniques of this section. It can be answered,
but not easily by the techniques of the previous chapter.

Rather than the probability that the firsc success occurs on a specified trial, we may
be interested in the average wait until the first success. The average wait until the
first success of a geometric random variable is 1/p. (This can be derived by summing
(1)eP(X=1)+(2):PX=2)+ (3)PAX=3) +...=1p+ 2p(1 = p) +3p(1 = p)* + ..., which
can be done using algebraic techniques for summing an infinite series with a common
ratio less than 1.)

example: On average, how many free throws will Dolores have to take before
she makes one (remember, p = 0.65)?

solution: %.65 =1.54,

Since, in a geometric distribution, P(X = n) = p(1=p)"" the probabilities
become less likely as 7 increases since we are multiplying by 1 — p, a number less
than one. The geometric distribution has a step-ladder approach that looks like

this:

Sampling Distributions

Suppose we drew a sample of size 10 from a normal population with unknown mean and
standard deviation and got X = 18.87. Two questions arise: (1) what does this sample tell
us about the population from which the sample was drawn, and (2) what would happen if
we drew more samples?

Suppose we drew 5 more samples of size 10 from this population and got
% = 20.35, ¥ = 20.04, ¥ = 19.20, ¥ = 19.02, and x = 20.35. In answer to question (1), we
i might believe that the population from which these samples was drawn had a mean around
i 20 because these averages tend to group there (in fact, the six samples were drawn from a
normal population whose mean is 20 and whose standard deviation is 4). The mean of the

6 samples is 19.64, which supports our feeling that the mean of the original population
might have been 20.

The standard deviation of the 6 samples is 0.68 and you might not have any intuitive
1 sense about how that relates to the population standard deviation, although you might sus-
i pect that the standard deviation of the samples should be less than the standard deviation
b of the population because the chance of an extreme value for an average should be less than

b | that for an individual term (it just doesn’t scem very likely that we would draw a /ot of
extreme values in a single sample).




