DRILL QUESTION

Given the graph of f(x) shown, sketch the graph of $\frac{1}{2}f(x) + 1$.

Answer

2.5 EXERCISES

CONCEPTS

1-2 Fill in the blank with the appropriate direction (left, right, up, or down).

- 1. (a) The graph of y = f(x) + 3 is obtained from the graph of 3 units v = f(x) by shifting _
 - (b) The graph of y = f(x + 3) is obtained from the graph of y = f(x) by shifting ____ ___ 3 units.
- 2. (a) The graph of y = f(x) 3 is obtained from the graph of y = f(x) by shifting _ _ 3 units.
- (b) The graph of y = f(x 3) is obtained from the graph of y = f(x) by shifting ____ _ 3 units.
- 3. Fill in the blank with the appropriate axis (x-axis or y-axis).
- (a) The graph of y = -f(x) is obtained from the graph of = f(x) by reflecting in the _
- (b) The graph of y = f(-x) is obtained from the graph of y = f(x) by reflecting in the
- 4. Match the graph with the function.
- (a) y = |x + 1|
- **(b)** y = |x 1|
- (c) y = |x| 1
- (d) y = -|x|

SKILLS

5-14 ■ Suppose the graph of f is given. Describe how the graph of each function can be obtained from the graph of f.

- 5. (a) y = f(x) 5
- **(b)** y = f(x 5)
- 6. (a) y = f(x + 7)
- **(b)** y = f(x) + 7
- 7. (a) y = -f(x)
- **(b)** y = f(-x)
- 8. (a) y = -2f(x)
- **(b)** $y = -\frac{1}{2}f(x)$

- **9.** (a) y = -f(x) + 5
- **(b)** y = 3f(x) 5
- **10.** (a) $y = f(x-4) + \frac{3}{4}$
- **(b)** $y = f(x + 4) \frac{3}{4}$
- **11.** (a) y = 2f(x+1) 3
- **(b)** y = 2f(x 1) + 3
- 12. (a) y = 3 2f(x)
- **(b)** y = 2 f(-x)
- 13. (a) y = f(4x)
- **(b)** $y = f(\frac{1}{4}x)$
- **14.** (a) y = f(2x) 1
- **(b)** $y = 2f(\frac{1}{2}x)$
- **15–18** Explain how the graph of g is obtained from the graph
- **15.** (a) $f(x) = x^2$, $g(x) = (x + 2)^2$ (b) $f(x) = x^2$, $g(x) = x^2 + 2$
- **16.** (a) $f(x) = x^3$, $g(x) = (x 4)^3$ (b) $f(x) = x^3$, $g(x) = x^3 4$
- 17. (a) f(x) = |x|, g(x) = |x+2| 2(b) f(x) = |x|, g(x) = |x-2| + 2
- **18.** (a) $f(x) = \sqrt{x}$, $g(x) = -\sqrt{x} + 1$ **(b)** $f(x) = \sqrt{x}$, $g(x) = \sqrt{-x} + 1$
- 19. Use the graph of $y = x^2$ in Figure 4 to graph the following.
 - (a) $g(x) = x^2 + 1$ (b) $g(x) = (x 1)^2$ (c) $g(x) = -x^2$

 - (d) $g(x) = (x-1)^2 + 3$
- **20.** Use the graph of $y = \sqrt{x}$ in Figure 5 to graph the following.
 - (a) $g(x) = \sqrt{x-2}$ (b) $g(x) = \sqrt{x} + 1$
 - (c) $g(x) = \sqrt{x+2} + 2$
 - (d) $g(x) = -\sqrt{x} + 1$
- 21-44 Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.
- **21.** $f(x) = x^2 1$
 - **22.** $f(x) = x^2 + 5$
- 23. $f(x) = \sqrt{x} + 1$
- **24.** f(x) = |x| 1
- 25. $f(x) = (x-5)^2$
- **26.** $f(x) = (x + 1)^2$
- 27. $f(x) = \sqrt{x+4}$
 - **28.** f(x) = |x 3|
- \bullet 29. $f(x) = -x^3$
- **30.** f(x) = -|x|
- **31.** $y = \sqrt[4]{-x}$
- **32.** $y = \sqrt[3]{-x}$ $33. y = \frac{1}{4}x^2$

CHAPTER 2 Functions

34.
$$y = -5\sqrt{x}$$

35.
$$y = 3|x|$$

36.
$$y = \frac{1}{2}|x|$$

37.
$$y = (x-3)^2 + 5$$

38.
$$y = \sqrt{x+4} - 3$$

39.
$$y = 3 - \frac{1}{2}(x - 1)^2$$

40.
$$y = 2 - \sqrt{x+1}$$

41.
$$y = |x + 2| + 2$$

42.
$$y = 2 - |x|$$

43.
$$y = \frac{1}{2}\sqrt{x+4} - 3$$

44.
$$y = 3 - 2(x - 1)^2$$

45–54 ■ A function f is given, and the indicated transformations are applied to its graph (in the given order). Write the equation for the final transformed graph.

- **45.** $f(x) = x^2$; shift upward 3 units
- **46.** $f(x) = x^3$; shift downward 1 unit
- **47.** $f(x) = \sqrt{x}$; shift 2 units to the left
- **48.** $f(x) = \sqrt[3]{x}$; shift 1 unit to the right
- **49.** f(x) = |x|; shift 3 units to the right and shift upward 1 unit
- **50.** f(x) = |x|; shift 4 units to the left and shift downward
- **51.** $f(x) = \sqrt[4]{x}$; reflect in the *y*-axis and shift upward 1 unit
- **52.** $f(x) = x^2$; shift 2 units to the left and reflect in the x-axis
- **53.** $f(x) = x^2$; stretch vertically by a factor of 2, shift downward 2 units, and shift 3 units to the right
- **54.** f(x) = |x|; shrink vertically by a factor of $\frac{1}{2}$, shift to the left 1 unit, and shift upward 3 units

55–60 \blacksquare The graphs of f and g are given. Find a formula for the function g.

55.

61–62 ■ The graph of y = f(x) is given. Match each equation with its graph.

61. (a)
$$y = f(x - 4)$$

(c) $y = 2f(x + 6)$

(b)
$$y = f(x) + 3$$

(d) $y = -f(2x)$

(c)
$$y = 2f(x+6)$$

(d)
$$y = f(2x) + f(2x)$$

62. (a)
$$y = \frac{1}{3}f(x)$$

(c) $y = f(x - 4) + 3$

(b)
$$y = -f(x + 4)$$

(d) $y = f(-x)$

• 63. The graph of f is given. Sketch the graphs of the following functions.

(a)
$$y = f(x - 2)$$

(c) $y = 2f(x)$

(b)
$$v = f(v) - 2$$

(c)
$$y = 2f(x)$$

(e) $y = f(-x)$

(b)
$$y = f(x) - 2$$

(d) $y = -f(x) + 3$
(f) $y = \frac{1}{2}f(x - 1)$

(f)
$$y = -f(x)$$

- **64.** The graph of g is given. Sketch the graphs of the following functions.
 - (a) y = g(x + 1)(c) y = g(x 2)(e) y = -g(x)
- **(b)** y = g(-x)
- (d) y = g(x) 2(f) y = 2g(x)

- 65. The graph of g is given. Use it to graph each of the following functions
 - (a) y = g(2x)
- **(b)** $y = g(\frac{1}{2}x)$

- 66. The graph of h is given. Use it to graph each of the following
 - (a) y = h(3x)
- **(b)** $y = h(\frac{1}{3}x)$

67-68 ■ Use the graph of f(x) = [x] described on page 156 to graph the indicated function.

67.
$$y = [2x]$$

68.
$$y = [\![\frac{1}{4}x]\!]$$

- 69-72 Graph the functions on the same screen using the given viewing rectangle. How is each graph related to the graph in part (a)?
 - 69. Viewing rectangle [-8, 8] by [-2, 8](a) $y = \sqrt[4]{x}$ (b) $y = \sqrt[4]{x+5}$ (c) $y = 2\sqrt[4]{x+5}$ (d) $y = 4+2\sqrt[4]{x+5}$

(a)
$$y = \sqrt[3]{x}$$

(b)
$$y = \sqrt{x+5}$$

(d) $y = 4 + 2\sqrt[4]{x+5}$

- **70.** Viewing rectangle [-8, 8] by [-6, 6]

- (a) y = |x|(c) y = -3|x|
- (b) y = -|x|(d) y = -3|x 5|
- **71.** Viewing rectangle [-4, 6] by [-4, 4]

(a)
$$v = x^6$$

(a) $y = x^6$ (c) $y = -\frac{1}{3}x^6$

(b)
$$y = \frac{1}{3}x^6$$

(d) $y = -\frac{1}{3}(x-4)^6$

72. Viewing rectangle [-6, 6] by [-4, 4]

(a)
$$y = \frac{1}{\sqrt{x}}$$

(b)
$$y = \frac{1}{\sqrt{x + x^2}}$$

(c)
$$y = \frac{1}{2\sqrt{x+3}}$$

(d)
$$y = \frac{1}{2\sqrt{x+3}} - 3$$

- **23.** If $f(x) = \sqrt{2x x^2}$, graph the following functions in the viewing rectangle [-5, 5] by [-4, 4]. How is each graph related to the graph in part (a)? (a) y = f(x) (b) y = f(2x)
- (c) $y = f(\frac{1}{2}x)$
- **24.** If $f(x) = \sqrt{2x x^2}$, graph the following functions in the viewing rectangle [-5, 5] by [-4, 4]. How is each graph related to the graph in part (a)?
- **(b)** y = f(-x)
- $(\mathbf{d}) \ y = f(-2x)$
- (a) y = f(x)(c) y = -f(-x)(e) $y = f(-\frac{1}{2}x)$
- 75-82 Determine whether the function f is even, odd, or neither. If f is even or odd, use symmetry to sketch its graph.

$$\bullet$$
 . 75. $f(x) = x^4$

76.
$$f(x) = x^2$$

$$-$$
 77. $f(x) = x^2 + x$

78.
$$f(x) = x^4 - 4x^2$$

$$-$$
 79. $f(x) = x^3 - x$

80.
$$f(x) = 3x^3 + 2x^2 + 1$$

81.
$$f(x) = 1 - \sqrt[3]{x}$$

82.
$$f(x) = x + \frac{1}{x}$$

83–84 The graph of a function defined for $x \ge 0$ is given. Complete the graph for x < 0 to make (a) an even function and (b) an odd function.

- **85–86** These exercises show how the graph of y = |f(x)| is obtained from the graph of y = f(x).
- **85.** The graphs of $f(x) = x^2 4$ and $g(x) = |x^2 4|$ are shown. Explain how the graph of g is obtained from the graph of f.

 $f(x) = x^2 - 4$

