SEQUENCES AND SERIES: REVIEW PACKET!

Arithmetic/Geometric Sequences, Summation Notation, Recursive Sequences, Partial/Infinite Sums, Binomial Expansions

Part 1: Find the first four terms as well as the tenth term of the sequence. Then find the 4^{th} partial sum.

1.)
$$a_n = \frac{n^2}{n+1}$$

$$Q_1 = \frac{1^2}{1+1} = \frac{1}{2}$$

$$Q_2 = \frac{2^2}{2+1} = \frac{1}{3}$$

$$Q_3 = \frac{3^2}{3+1} = \frac{9}{4}$$

$$Q_4 = \frac{4^2}{4+1} = \frac{16}{5}$$

$$Q_{10} = \frac{10^2}{10+1} = \frac{100}{11}$$

2.)
$$a_n = \frac{n(n+1)}{2}$$

$$Q_{10} = \frac{10(11)}{2} = 55$$

$$Q_{1} = \frac{1(1+1)}{2} = 1$$

$$Q_{2} = \frac{2(2+1)}{2} = 3$$

$$Q_{3} = \frac{3(3+1)}{2} = 6$$

$$Q_{4} = \frac{4(4+1)}{2} = 10$$

Part 2: A sequence is defined recursively. Find the first 3 terms and the 10th term of sequence (use your calculator to find the 10th term).

3.)
$$a_n = \frac{a_{n-1}}{n}, \quad a_1 = 1$$

$$Q_{1} = 1$$

$$Q_{2} = \frac{1}{2}$$

$$Q_{3} = \frac{1}{2} = \frac{1}{6}$$

$$Q_{10} = 2.8 \times 10^{-7}$$

Part 3: SIGMA NOTATION: Write the sum using sigma notation. Do Not Evaluate.

Write the sum WITHOUT sigma notation. Do Not Evaluate. (you may use ...)

6.
$$\sum_{k=1}^{10} (k-1)^{2} \qquad (1-1)^{2} + (2-1)^{2} + (3-1)^{2} + \dots + (10-1)^{2}$$

$$= 0^{2} + 1^{2} + 2^{2} + \dots + 0^{2}$$

Part 4: Tell whether the sequence is arithmetic, geometric or neither. Explain.

14 +4 +4

9.) 40, 10, $\frac{5}{2}$, $\frac{5}{8}$, ...

ARIThmetic diff. btw consecutive terms is constant (d=4) (+4)

Geometric.
each subsequent termis
I/4 te premous term.
$$\Gamma = \frac{1}{4}.$$

Part 5: Write the next term of the sequence, and then write a rule for the nth term.

$$Q_n = Q_1 + (n-1)d$$
 $Q_1 = Q_2$

11.)
$$\frac{6}{5}$$
, $\frac{7}{10}$, $\frac{8}{15}$, $\frac{9}{20}$, ... $\frac{10}{25}$

$$Q_n = \frac{n+5}{5n}$$

Part 6: Find the first four partial sums and the nth partial sum of the sequence a_n .

12.)
$$a_n = \frac{3}{4^n}$$

$$5_{1} = \frac{3}{4!} = \frac{3}{4}$$

$$5_{2} = \frac{3}{4!} + \frac{3}{4^{2}} = \frac{15/16}{15/16}$$

$$5_{3} = \frac{3}{4!} + \frac{3}{4^{2}} + \frac{3}{4^{3}} = \frac{63/64}{256}$$

$$5_{4} = \frac{3}{4!} + \frac{3}{16!} + \frac{3}{64} + \frac{3}{256} = \frac{255/256}{4^{2}}$$

$$5_{5} = \frac{4^{2} - 1}{4^{2}} \quad \text{or} \quad 1 = \frac{1}{4^{2}}$$

Part 7: Determine if the series converges. If it does, find the sum of the series.

 $1 + 0.9 + 0.9^2 + ...$ 13.)

$$r = 0.9$$

 $Q_1 = 1$

$$=\frac{1}{1-0.9}=\frac{1}{0.1}=\boxed{10}$$

sum of the In Findte series.

14.)
$$\sum_{n=1}^{\infty} 5 \cdot 1.02^{n-1}$$

14.) $\sum_{n=1}^{\infty} 5 \cdot 1.02^{n-1}$ Series will
diverge (grows without)

ie. Infinite sum is 00

Sum of an arithmetic Sequence $(a_1 + a_1) \frac{m}{2}$ $(40 + 298) \frac{130}{2}$ = 21,970 total seats

Name:	Date:Prd
18.) At the age of 21, Cyndi began receiving yearly p birthday, she received twice as much as in the precease 25, how much did she receive at age 21 (her first	ding year. If she had received a total of \$303,800 by
a = ? Seometric series solv	e fora,
$r = 2$ Formula for $303,800 = a_1(1-2^5)$) a ₅ =303,800
Partial sum	(heck:
of a grown. seq. $S_n = \frac{\alpha_1(1-r^n)}{303.8}$	00 = a, (1-25) $76,400 + 156,800 = $ $303,800$
$5n = \frac{1}{1-r}$	$\frac{300}{31} = \frac{3101}{-31}$ $0 = \frac{89,800}{31}$
rait /. Dillomiai Expansions.	31
19.) Expand the binomial (you may use Pascal's tria	ngle or the binomial theorem). (2x + y)
2 (2)	
3 1331 Q=2x	
5 15 10 10 5 1 16 16 15 20 15 6 1	
106+605b+1504b2+2003b3.	+15a264+6a65+66
(2x)6+6(2x)5(y)+15(2x)4(y2)+20	$(2x)^{3}(y^{3}) + 15(2x)^{2}(y^{4}) + 6(2x)(y^{5}) + y^{6}$
	$60x^3y^3 + 60x^2y^4 + 12xy^5 + y^6$
(6) a6 + (6) a5 b' + (6) a4	the biham-teorem (though Pascal's Dis faster here)
20.) Find the term containing A^6 in the expansion of ($(A+3B)^{10} = (0)$
Formula V=6	$\alpha = A$
	b=3B
$\binom{n}{n-r}$ or b^{n-r}	
(6) a 6 10-6	* Herc's where
` '	tre binomial
210 (A)6 (3B)4	useful.
210 A6 (81B4)	
[17,010 A 6 B4]	