Probability and Random Variables

IN THIS CHAPTER

Summary: We've completed the basics of data analysis and we now begin the
transition to inference. In order to do inference, we need to use the language
of probability. In order to use the language of probability, we need an under-
standing of random variables and probabilities. The next two chapters lay the
probability foundation for inference. In this chapter, we'll learn about the
basic rules of probability, what it means for events to be independent, and
about discrete and continuous random variables, simulation, and rules for
combining random variables.
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robability

The second major part of a course in statistics involves making inférences about populations
based on sample data (the first was exploratory data analysis). The ability to do this is based
on being able to make statements such as, “The probability of getting a finding as different,
or more different, from expected as we got by chance alone, under the assumption that the
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null hypothesis is true, is 0.6.” To make sense of this statement, you need to have a under-
standing of what is meant by the term “probability” as well as an understanding of some of
the basics of probability theory.

An experiment or chance experiment (random phenomenon): An activity whose
outcome we can observe or measure but we do not know how it will turn out on any single
wrial. Note that this is a somewhat different meaning of the word “experiment” than we
developed in the last chapter.

example: if we roll a die, we know that we will geta 1, 2, 3, 4, 5, or 6, but we
don’t know which one of these we will get on the next trial. Assuming a fair die,
however, we do have a good idea of approximately what proportion of each pos-
sible outcome we will get over a large number of trials.

Outcome: One of the possible results of an experiment (random phenomenon).

example: the possible outcomes for the roll of a single die are 1, 2, 3, 4,5, 6.
Individual outcomes are sometimes called simple events.

Sample Spaces and Events

Sample space: The set of all possible outcomes, or simple events, of an experiment.
example: For the roll of a single die, S = {1, 2, 3, 4, 5, 6}.

Event: A collection of outcomes or simple events. That is, an event is a subset of the
sample space.

example: For the roll of a single die, the sample space (all outcomes or simple
events) is S = {1, 2, 3, 4, 5, 6}. Let event A = “the value of the die is 6.” Then
A = {6}. Let B = “the face value is less than 4.” Then B = {1, 2, 3}. Events A

and B are subsets of the sample space.

example: Consider the experiment of flipping two coins and noting whether each
coin lands heads or tails. The sample space is S = {HH, HT, TH, TT}. Let
event B = “at least one coin shows a head.” Then B = {HH, HT, TH}. Event B
is a subset of the sample space S.

Probability of an event: the relative frequency of the outcome. That is, it is
the fraction of time that the outcome would occur if the experiment were repeated indefi-
nitely. If we let E = the event in question, s = the number of ways an outcome can succeed,
and f= the number of ways an outcome can fail, then

5
s+ f

Note that s + fequals the number of outcomes in the sample space. Another way to
think of this is that the probability of an event is the sum of the probabilities of all out-
comes that make up the event.

For any event A, XA) ranges from O to 1, inclusive. That is, 0 = P(A) = 1. This is an

algebraic result from the definition of probability when success is guaranteed (f=0, s= 1)
or failure is guaranteed (f=1, s= 0).

P(E) =

The sum of the probabilities of all possible outcomes in a sample space is one. That is,
if the sample space is composed of # possible outcomes,

2p,=1- !
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example: In the experiment of flipping two coins, let the event A = obtain at least
one head. The sample space contains four elements ({HH, HT, TH, TT}).

s = 3 because there are three ways for our outcome to be considered a success

({HH, HT, TH}) and f= 1.
Thus

P(A)=——3—=é.
3+1 4

example: Consider rolling two fair dice and noting their sum. A sample space
for this event can be given in table form as follows:

Face 1 2 3 4 5 6
; 1 2 3 4 5 6 7
: 2 3 4 5 6 7 8
': 3 4 5 6 7 8 9
j 4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Let B = “the sum of the two dice is greater than 4.” There are 36 outcomes in the sam-
ples space, 30 of which are greater than 4. Thus,

BB, s
36 6
| Furthermore,
Ep.=P(2)+P(3)+---+P(12)=—1—+£+---+i=1.
' 36 36 36

Probabilities of Combined Events

P(A or B): The probability that either event A or event B occurs. (They can both occur,
but only one needs to occur.) Using set notation, XA or B) can be written P(A UB).
AUB is spoken as, “A union B.”

P(A and B): The probability that both event A and event B occur. Using set notation,
P(A and B) can be written P(AMNB). ANB is spoken as, “A intersection B.”

example: Roll two dice and consider the sum (see table). Let A = “one die shows
a 3,” B = “the sum is greater than 4.” Then XA or B) is the probability that
either one die shows a 3 or the sum is greater than 4. Of the 36 possible out-
comes in the sample space, there are 32 possible outcomes that are successes
[30 outcomes greater than 4 as well as (1,3) and (3,1)], so

P(AorB) = E
36
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There are nine ways in which a sum has one die showinga 3 and has a sum greater than

4 [3,2), (3,3), (3,4), (3,5), (3,6), (2,3), (4:3), (5,3), (6:3)]. s0

P(AandB) = —9—
36

Complement of an event A: events in the sample space that are not in event A,
The complement of an event A is symbolized by A, or A . Furthermore, (A ) =
1 - P(A).

Mutually Exclusive Events

Mutually exclusive (disjoint) events: Two events are said to be mutually exclusive (some
texts refer to mutually exclusive events as disjoint) if and only if they have no outcomes in
common. That is, ANB=@ . If A and B are mutually exclusive, then P(A and B) =
P(ANB)=0.

example: in the two-dice rolling experiment, A = “face shows a 17 and B = “sum
of the two dice is 8” are mutually exclusive because there is no way to geta sum
of 8 if one die shows a 1. That is, events A and B cannot both occur.

Conditional Probability

Conditional Probability: “The probability of A given B” assumes we have knowledge of
an event B having occurred before we compute the probability of event A. This is symbol-

ized by AAIB). Also,

P(A|B)=——P(§Z§B).

Although this formula will work, it’s often easier to think of a condition as reducing, in
some fashion, the original sample space. The following example illustrates this “shrinking
sample space.”

example: Once again consider the possible sums on the roll of two dice. Let
A = “the sum is 7,” B = “one die shows a 5.” We note, by counting outcomes
i1 the table, that Z(A) = 6/36. Now, consider a slightly different question: what
is P(AIB) (that is, what is the probability of the sum being 7 given that one die
shows a 5)?

solution: Look again at the table:

Face 1 2 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 |7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11|
6 |7 8 9 10 |Lal | 12
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The condition has effectively reduced the sample space from 36 outcomes to
only 11 (you do not count the “10” twice). Of those, two are 7s. Thus, the
P(the sum is 7 | one die shows a 5) = 2/11.

alternate solution: If you insist on using the formula for conditional probability,
we note that P(A and B) = P(the sum is 7 and one die shows a 5) = 2/36, and
P(B) = Pone die shows a 5) = 11/36. By formula

2/
P(Aand B) /36 2
PA1B)= pB) 11/ 11
/36

Some conditional probability problems can be solved by using a tree diagram.
A tree diagram is a schematic way of looking at all possible outcomes.

example: Suppose a computer company has manufacturing plants in three states.
50% of its computers are manufactured in California, and 85% of these are
desktops; 30% of computers are manufactured in Washington, and 40% of
these are laptops; and 20% of computers are manufactured in Oregon, and
40% of these are desktops. All computers are first shipped to a distribution site
in Nebraska before being sent out to stores. If you picked a computer at
random from the Nebraska distribution center, what is the probability that it is

a laptop?

solution:
laptop (0.15)  p=(0.5)(0.15) = 0.075
California (0.50) <
desktop (0.85) p = (0.5)(0.85) = 0.425
laptop (0.40) p=(0.3)(0.4) = 0.12
State Washington (0.30) <
desktop (0.60) p=(0.3)(0.6) = 0.18
laptop (0.60)  p = (0.2){0.6) = 0.12
Oregon (0.20) Z
"= deskiop (0.40) p=(0.2)(0.4) = 0.08

Note that the final probabilities add to 1 so we know we have considered all possible
outcomes. Now, Xlaptop) = 0.075 + 0.12 + 0.12 = 0.315.

Independent Events
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(i) Are A and B independent?

solution: AAIB) = P(the card drawn is an ace | the card is a 10, ], Q, K, or A) =
4/20 = 1/5 (there are 20 cards to consider, 4 of which are aces). Since P(A) = 1/13,
knowledge of B has changed what we know about A. That is, in this case, P(A) =
P(AIB), so events A and B are not independent,

(ii) Are A and C independent?

solution: AAIC) = Pthe card drawn is an ace | the card drawn is a diamond) =
1/13 (there are 13 diamonds, one of which is an ace). So, in this case, AA) =
P(AIC), so that the events “the card drawn is an ace” and “the card drawn is a
diamond” are independent.

Probability of A and B or A or B

The Addition Rule: P(A or B) = P(A) + P(B) — XA and B).
Special case of The Addition Rule: If A and B are murually exclusive,
P(A and B) = 0, so P(A or B) = P(A) + P(B).

The Multiplication Rule: (A and B) = P(A) «P(BIA).

Special case of The Multiplication Rule: If A and B are independent,
P(BIA) = P(B), so P(A and B) = P(A)*P(B).

example: If A and B are two mutually exclusive events for which P(A) = 0.3,
P(B) =0.25. Find P(A or B).

solution: P(A or B) = 0.3 + 0.25 = 0.55.

example: A basketball player has a 0.6 probability of making a free throw. What is
his probability of making two consecutive free throws if

(a) he gets very nervous after making the first shot and his probability of making |
the second shot drops to 0.4. ‘

solution: P(making the first shot) = 0.6, P(making the second shot | he made the
first) = 0.4. So, A(making both shots) = (0.6)(0.4) = 0.24.

(b) the events “he makes his first shot” and “he makes the succeeding shot” are
independent.

solution: Since the events are independent, his probability of making each shot is

the same. Thus, P(he makes both shots) = (0.6)(0.6) = 0.36.

Random Variables

Recall our earlier definition of an experiment (random phenomenon): An activity whose
outcome we can observe and measure, but for which we can’t predict the result of any single
trial. A random variable, X; is a numerical value assigned to an outcome of a random phe-
nomenon. Particular values of the random variable X are often given small case names, such
as x. It is common to sce expressions of the form (X = x), which refers to the probability
that the random variable X takes on the particular value x.

example: If we roll a fair die, the random variable X could be the face-up value of
the die. The possible values of Xare {1, 2, 3, 4, 5, 6}. (X =2) = 1/6.




Probability and Random Variables < 149

example: The score a college-hopeful student gets on her SAT test can take on
values from 200 to 800. These are the possible values of the random variable X,
the score a randomly selected student gets on his/her test.
There are two types of random variables: discrete random variables and continuous
random variables.

Discrete Random Variables

A discrete random variable (DRV) is a random variable with a countable number of out-
comes. Although most discrete random variables have a finite number of outcomes, note
that “countable” is not the same as “finite.” A discrete random variable can have an infinite
number of outcomes. For example, consider f(72) = (0.5)”. Then f(1) = 0.5, f(2) = (0.5)* =
0.25, f(0.5)* = 0.125,. . . There are an infinite number of outcomes, but they are counta-
ble in that you can identify f(») for any ».

example: the number of votes earned by different candidates in an election.

example: the number of successes in 25 trials of an event whose probability of
success on any one trial is known to be 0.3.

Continuous Random Variables

A continuous random variable (CRV) is a random variable that assumes values associated
with one or more intervals on the number line. The continuous random variable X has an
infinite number of outcomes.

example: Consider the uniform distribution y = 3 defined on the interval 1 = x< 5.
The area under y = 3 and above the x axis for any interval corresponds to a con-
tinuous random variable. For example, if 2 = x < 3, then X=3.If 2 = x < 4.5,
then X'= (4.5 — 2)(3) = 7.5. Note that there are an infinite number of possible
outcomes for X

Probability Distribution of a Random Variable

A probability distribution for a random variable is the possible values of the random
variable X together with the probabilities corresponding to those values.

A probability distribution for a discrete random variable is a list of the possible
values of the DRV together with their respective probabilities.

example: Let X be the number of boys in a three-child family. Assuming that
the probability of a boy on any one birth is 0.5, the probability distribution
for Xis

X [0 1 2 3
PX)| 1/8 | 3/8 | 318 | 1/8

The probabilities 7; of a DRV satisfy two conditions:
(1) 0 = P; =< 1 (that is, every probability is between 0 and 1).
(2) ZP; =1 (that is, the sum of all probabilities is 1).

(Are these conditions satisfied in the above example?)
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The mean of a discrete random variable, also called the expected value, is
given by

T E x+ P(x).

The variance of a discrete random variable is given by

Uz\ = z (x— ,LLX)z - P(x).
The standard deviation of a discrete random variable is given by

0, =3 et P,

example: Given that the following is the probability distribution for a DRV,
find P(X = 3).

X |2 3 4 5 6
P(X)| 0.15 0.2 | 02 | 035 |

solution: Since 3,2 =1, A3) = 1 - (0.15 + 0.2+ 0.2+ 0.35) = 0.1.

example: For the probability distribution given above, find y, and O,

solution:

1. =2(0.15)+3(0.1)+4(0.2)+5(0.2)+6(0.35)=4.5.

X

0, =\(2-4.57(0.15)+(3-4.5/(0.)+ ... +(6-4.5)°(0.35) =1.432.

Calculator Tip: While it’s important to know the formulas given above, in practice it’s
easier to use your calculator to do the computations. The TI-83/84 can do this easily by
putting the x-values in, say, L1, and the values of AX) in, say, L2 . Then, entering 1-Var
Stats L1,L2 and pressing ENTER will return the desired mean and standard devia-
tion. Note that the only standard deviation given is ¢ x—the Sx is blank. Your calculator,
in its infinite wisdom, recognizes that the entries in L2 are relative frequencies and
assumes you are dealing with a probability distribution (if you are taking measurements
on a distribution, there is no such thing as a sample standard deviation).

]

example: Redo the previous example using the TI-83/ 84, or equivalent, calculator.

solution: Enter the x values in a list (say, L1) and the probabilities in another list
(say, L2). Then enter “1-Var Stats L1, 12”7 and press ENTER . The cal-
culator will read the probabilities in L2 as relative frequencies and return 4.5
for the mean and 1.432 for the standard deviation.

Probability Histogram

A probability histogram of 2 DRV is a way to picture the probability distribution. The fol-
lowing is a TI-83/84 histogram of the probability distribution we used in a couple of the
examples above.
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Probability Distribution for a Continuous Random Variable (CRV). The probabil-
ity distribution of a continuous random variable has several properties.

e There is a smooth curve, called a density curve (defined by a density function), that
describes the probability distribution of a CRV (sometimes called a probability dis-
tribution function). A density curve is always on or above the horizontal axis (that is,
it is always non-negative) and has a total area of 1 underneath the curve and above

the axis.
¢ The probability of any individual event is 0. That is, if zis a point on the horizonral axis,
P(X =a) =0.

* The probability of a given event is the probability that x will fall in some given interval
on the horizontal axis and equals the area under the curve and above the interval. That
is, P(a < X < b) equals the area under the graph of the curve and above the horizontal
axis between X'= zand X= 4.

* The previous two bulleted items imply that P(2 < X< b) = Pla = X < b).

In this course, there are several CRVs for which we know the probability density func-
tions (a probability distribution defined in terms of some density curve). The normal distri-
bution (introduced in Chapter 4) is one whose probability density function is the normal
probability distribution. Remember that the normal curve is “bell-shaped” and is sym-
metric about the mean U of the population. The tails of the curve extend to infinity,
although there is very little area under the curve when we get more than, say, three standard
deviations away from the mean (the empirical rule stated that about 99.7% of the terms in |
a normal distribution are within three standard deviations of the mean. Thus, only about
0.3% lie beyond three standard deviations of the mean).

Areas between two values on the number line and under the normal probability distri-
bution correspond to probabilities. In Chapter 4, we found the proportion of terms falling
within certain intervals. Because the total area under the curve is 1, in this chapter we will
consider those proportions to be probabilities.

Remember that we standardized the normal distribution by converting the data to z-scores

We learned in Chapter 4 that a standardized distribution has a mean of 0 and
a standard deviation of 1.




